PRESSURE AND TEMPERATURE OF SUBTERRANEAN LIQUIDS AS EARTHQUAKE INDICATORS
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Much interesting experimental material has been accumulated [1-5] concerning fluid pre-
cursors of earthquates, in the form of hydrorheodynamic and geometric effects. It is well
known [4] that underground waters react to elastic deformations of the earth's core caused
by tidal forces, while periodic variations have been observed in the output of artesian wells.
Such reactions of supply strata are of special significance in predicting earthquates, since
earthquate initiation is always accompanied by changes in the stress—strain state of earth
components.

Changes in the volume of a saturated rock mass produce an increase or decrease in the
water table, and a well system in such strata with accurate level recorders forms an excel-
lent seismograph.

The present study will utilize the theory of heterogeneocus media to perform a precise
analysis of the reactions of a stratum completely saturated by liquid to periodic long-wave
perturbations of the stress state in the form of perturbations and interactions of the tem-
perature and pore pressure fields. The amplitude—frequency characteristics obtained for the
supply stratum may be used for prediction of earthquakes as well as tidal ebb and flow pro-
cesses in the earth's core.

1. Assume a linearly elastic stratum completely saturated by liquid which is slightly
compressible. Then for small perturbations of the pore pressure the continuity equations of
the solid and liquid phases, the filtration law, and the equations of conservation of energy
of each phase are linearized. If the temperatures of the phases are equal then these equa-
tions have the form [6]
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Here uj are solid particle displacements: vj, liquid particle velocities; eij and ofj com—
ponents of the deformation and effectlve stress tensors; P, pore pressure perturbation; T,
liquid phase temperature perturbation; pl, pd and B1, B2, density and isothermal compress-
ibility coefficient of solid and liquid phase; m, deviation of stratum porosity from initial
value mo; a1, a2, volume expansion coefficients; da, Cp, thermal conductivity and heat capac-
ity (at constant pressure) of liquid phase, calculated per unit volume; ko, p, stratum perme-
ability and liquid viscosity coefficients; v, E, Poisson coefficient and Young's modulus;

(1 — mp)K, compression modulus of stratum skeleton; W, potential of external forces; subscript
0 indicates unperturbed state.
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The process of earthquake initiation or tidal ebb/flow occurs slowly, so that the in-
ertial force may be neglected in Eq. (1.3). From continuity equation (1.1) and Hooke's law,
Eq. (1.5), we obtain
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Substitution of Egs. (1.3), (1.6) in the liquid phase continuity equation leads to the
following expression
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We assume that the well to be considered (uy(re, t) = 0) with radius re is located in an

infinite plane thermally insulated saturated stratum and that the stress field is perturbed
by external forces. Flow of liquid and heat over a time At into a well of cross section S,
changes the liquid level by an amount Af, so that AV = S1Af. This leads to a pressure change
AP = YAE, as a result of which thermal expansion of the liquid a2 changes the liquid tempera-—
ture in the well itself, as defined by the equation

AT; = (Balag)AP. (1.8

It is evident that the compressibility B2 1eads to a change in volume equal to —BAP(V —
AV) & —BoyVAE. Then the condition of conservation of volume of an element is written in the
form

SiAL = AV, + AV — BVYAE. (1.9)

Moreover, for liquid filtration and heat flow in the porous medium we use Darcy's law
Eq. (1.3), and Fourier's law [6]:
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V, = s, 8y = 2arch.

We substitute Eq. (1.10) in Eq. (1.9) and obtain the desired boundary condition on the
well wall in simplified form
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The secondary boundary conditions will be
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2. Differentiating both sides of Eqs. (1.4) and (1.7) with respect to t and eliminating
32T/9t? , we obtain
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Substituting 9V®T/dt from Eq. (2.1) in the equation obtained from Eq. (1.7) by taking the
Laplace transform, we obtain
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The variable P is replaced by the new function @ and we then write the sum of the addi-
tional main stresses in the form ‘
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Then Eq. (2.2) will have the form
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The solution of Eq. (2.4) can be written in the form
P =9+ P,
where the functions #; and #, are solutions of problems obtained from Egs. (1.12), (2.4):
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In Eqs. (2.5), (2.7) the parameters k; and ky are roots of the algebraic equation
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The solution of Eqs. (2.5), (2.6) has the form [7]
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is a solution of Eq. (2.5) which satisfies the condition U(r, tg) = 0, U(r., t) = 0. Here
Jo and Yo are zeroth-order Bessel functions of the first and second sorts.

The solution to the second problem of Eqs. (2.7), (2.8) is identically equal to zero
P, = 0.

Substituting Eq. (2.3) in system (1.4), (1.7) and using Eq. (2.9) and solution (2.10),
as well as the fact of temperature finiteness at infinity, we obtain
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where C* is an integration constant which does not affect the temperature field, so that we
may set C* = 0.

With the aid of Egs. (2.10), (2.11) condition (1.11) can be reduced to the form
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The function sought, &£(t), is a solution of a linear integrodifferential equation of
the form of Eq. (2.12). It is known that the perturbing forces are periodic and can be
represented as the sum of harmonic functions:
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We will seek the liquid level perturbation in the form of a Fourier series:
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where the known Cp, Cﬂ, Dﬁ, Co, Cns Dn and unknown Ay, Ay, By are Fourier coefficients; o is
the circle frequency of the exciting forces. We note that the process of field perturbation
is sufficiently removed from the initial point, so that the initial conditions do not affect
the pressure and temperature field distributions at the moment of observation, i.e., we take
to > —~. Substituting Eqs. (2.13), (2.14) in Eq. (2.12) and integrating the latter, after
grouping terms we obtain a system of algebraic equations
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To illustrate the use of this method, we will take

D (1) = 'C; cos of, ‘ (@) = C,coswt D, sinot = Acos (of — g).

Then the solution of system (2.15) in dimensionless variables will be
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Using Eqs. (2.14), (2.3), (2.10), (2.11), and (1.8), we determine the liquid level,
pressure, and temperature perturbations in the well
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The calculated stratum relaxation time fp= (src)gz——l—c—- -—c-—o-) depends not only on the piezo-
0 P

conductivity x = ko/uf and radius of the well, but also on the thermal parameters of the
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saturated stratum, which at To > O (a2 > a1) leads to a progressive process of field pertur-—
bation. Analysis reveals that due to thermal conductivity long-wave periodic heat propagation
from the depths of the saturated water stratum into the well is insignificant. However,
during the period of an earthquake the pressure P = y£(t) is perturbed by an amount (1-10)
kg/cm?, as a result of which the liquid temperature varies over a range of several degrees.
For water this value in the well is equal to 0.3-3°C.

It is evident from Figs. 1 and 2 that the presence of gravitational potentials in the
liquid filtration equation [see Eq. (1.3)] has an effect on liquid level variations in the
well. If the direction of the pore pressure gradients and the gravitational potential coin-
cide, an additional perturbation develops in the stratum, i.e., the well output, liquid level,
and temperature fluctuations increase. Figure 1 shows the amplification of a signal Ag/A in
water as a function of dimensionless frequency wpr/w for @ = 1.0472. The solid line corre-
sponds to C'/Cy = 0, with dashed lines 1, C'/Cy = 0.0t; 2, C'/Cy = —0.01. It is evident from
Fig. 2 that variations in water level in the well depend on the phase of the incident wave ¢ ;
curves 1, 2 correspond to ¢ = 1.0472; 0.3585.

The author is deeply indebted to V. N. Nikolaevskii for his evaluation and constant sup-
port of the study.
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